	[image: image1.wmf]
	Lebanese American University
Electrical and Computer Engineering Dept

COE 799
Optical Networks
Fall 2011

W. FAWAZ

Project I

Objective
The objective of this simulation project is to establish the value of the timer used in the CPS of AAL 2 that maximizes the average percentage fill of the ATM cells that carry CPS-PDUs, and minimizes the packetization delay in AAL 2.

Project description

You will assume that there are two end-devices interconnected with a VCC. The end-devices support a number of phone calls multiplexed onto the same connection using AAL 2. We will only model the AAL 2 functions in one of the two end-devices. The transfer of ATM cells across the ATM connection, the AAL 2 at the receiving end-device, and the flow of information in the opposite direction will not be modeled. The number of voice calls multiplexed on the same connection will be provided as input to the simulation.

Each voice call is associated with an SSCS, which provides a number of different functions. Of interest to this simulation project is the voice encoding algorithm and the size of the audio packet. We will assume that Pulse Code Modulation (PCM) is used which produces 8 bits per 125 sec. PCM is defined in ITU-T’s standard G.711. The output of the G.711 coder is accumulated over an interval of 1 msec to yield a sequence of 8 bytes, referred to as the encoded data unit (EDU). Further, five EDUs are blocked together into an audio packet of 40 bytes every 5msec. SSCS also detects the beginning of a silence period and it transmits as special silence insertion description (SID) code.

CPS serves a number of SSCSs each associated with a different phone call. The SSCSs operate asynchronously from each other. When CPS receives an audio packet it encapsulates it into a CPS-packet and it places it into the payload of a CPS-PDU, which is equal to 47 bytes. CPS keeps a timer T1. When the timer expires, it encapsulates whatever CPS-packets it has received into a CPS-PDU, adds padding if necessary, and sends the resulting CPS-PDU to the ATM layer. The amount of time it takes to carry out these tasks is assumed to be zero. If the CPS has not received any CPS-packets when T1 expires, then it does not create a CPS-PDU. T1 is reset immediately each time it expires. If the CPS payload is filled up before the timer expires, CPS prepares a CPS-PDU, sends it to the ATM layer, and resets the timer.

Each voice will be assumed to go through a talkspurt followed by a silence period. Only the bytes generated during each talkspurt are transported by AAL2, since the silence periods are suppressed. The rate of transmission of a voice during a talkspurt is 64 Kbps. The length of the talkspurt is assumed to be exponentially distributed with an average of 400 msec. The length of the silence period is also assumed to be exponentially distributed with an average of 600 msec.

The simulation structure

1. Simulation of a single SSCS

Since a voice alternates between a talkspurt and a silence period, the first thing to do is to generate the length of a talkspurt. When the talkspurt expires, generate a silence period, and when it expires generate a talkspurt and so on, until the simulation is ended. Keep a status variable which indicates whether the voice is in the talkspurt state or in the silence state.

Use the following procedure to generate exponentially distributed talkspurts or silence periods:

1.
Draw a random number r, 0<r<1, using a random number generator.

2.
X = -(mean)loger

For a talkspurt set mean=400 msec, and for a silence period set mean=600 msec. For simplicity, make sure that the generated talkspurts and silence periods are integers. This is easily done by taking the “floor” of each generated number. Remember to draw a new random r, 0<r<1, each time you need one!

An SSCS can be simulated as follows:

1. Generate a talkspurt.

2. Every 5 msec the SSCS produces an audio packet of 40 bytes, which is passed on to the CPS. Remember that the last audio packet may contain less than 40 bytes. Do not model the transmission of the SID code.

3. When the talkspurt expires generate a silence period, during which no audio packets are created.

4. Go back to step 1.

Notice that in this simulation we are not concerned with the content of the audio packets or the content of the CPS-packet and CPS-PDU headers. We are only concerned with the length, expressed in bytes, of each audio packet, CPS-packet, and CPS-PDU

2. Simulation of the CPS layer

The CPS layer should be simulated as follows:

1.
When CPS receives an audio packet, it creates a CPS-packet, and it checks to see whether the total number of bytes of the CPS packets received so far is equal to or more than 47. If yes, it creates a CPS-PDU and passes it down to the ATM layer. Keep track of the left-over bytes of a CPS-packet that did not fit entirely into the CPS-PDU. Reset T1.

2.
If T1 expires, CPS creates a CPS-PDU with the CPS-packets that it has received so far, adds padding, and passes the CPS-PDU down to the ATM layer. T1 is reset.

3.
If no CPS-packets have been received when T1 expires, simply reset T1.

Event-based simulation

Two different simulation designs can be used to build a simulation model, namely, event-based and unit-time based. Below, we describe an event-based simulation design of the simulation model of the AAL 2 layer.

We first identify the events that we need to monitor throughout the simulation:

· Events associated with each single SSCS:

1.
Completion of a talkspurt

2.
Completion of a silence period.

3.
During a talkspurt, completion of a 5 msec period

· Events associated with CPS:

1.
T1 expires.

2.
CPS receives an audio packet, in which case it has to check for the event that the CPS-PDU payload becomes full.

All the pending events in the simulation are kept in an event list. For each pending event keep track of the type of event so that you will know what action to take when it occurs and an event clock that indicates the time that it will occur in the future. The event list may be implemented as a linked list sorted out in an ascending order of the event clocks. The next event to occur is the one at the top of the event list. Alternatively, you could use a fixed array, where each row is dedicated to a particular event. To locate the next event you will have to scan the array to find the row that corresponds to the smallest event clock. Some of the events in the fixed array maybe void. To ensure that you do not select a void event, set its event clock to a very large number, not likely to occur during the execution of the simulation program!

In addition to the event list, you should keep a master clock (MCL) that you advance each time an event occurs. The master clock always gives the current time of the simulation when an event occurs. Since all the generated numbers are integers, all the event clocks and the master clock are integers too.

The main structure of the event-based simulation is as follows:

1. Locate the next event to occur in the future.

2. Set the master clock to the time the event occurs, and take appropriate action, depending on the type of event as indicated below.

3. If you have implemented the event list as a linked list, you have to insert any new events that you generate so that all the event clocks are sorted in an ascending order. If you use a fixed table, then it is a matter of locating the appropriate row and updating the event clock.

4. If total simulation time is not over, go back to step 1. Otherwise, calculate final statistics, print, and stop.

Next event: completion of a silence period

1.
Generate a talkspurt, set the corresponding event clock to the generated talkspurt plus MCL, and update the event list.

2.
Generate the time the first 5 msec period will expire. For is, set the corresponding event clock to MCL+5 and update the event list.

Next event: 5 msec period expires

1.
Calculate the number of bytes generated

2.
Generate the time the next 5 msec period will expire That is, set the corresponding event clock to MCL+5 and update the event list.

3.
Check to see whether the CPS-PDU is full. That is, execute the logic associated with event: “CPS receives an audio packet”.

Next event: completion of a talkspurt

1.
Generate the time the silence period will be completed, set the corresponding event clock to the generated silence period plus MCL, and update the event list.

2.
Generate the number of bytes created and check to see whether the CPU-PDU payload is full. That is, execute the logic associated with event: “CPS receives an audio packet”.

Next event: T1 expires

1.
The CPS-PDU is passed on to the ATM layer

2.
Generate the next time that T1 will expire. That is, set the appropriate event clock to T1+MCL, and update the event list.

Next event: CPS receives an audio packet

1.
Create a CPS-packet and add it to the payload.

2. Check to see if the payload is equal to or greater than 47 bytes. If yes, the CPS-PDU is passed on to the ATM layer, and T1 is reset. That is, the corresponding event clock is set to T1+MCL, and the event list is updated.

Remember that there may be left over bytes from the last CPS-packet. These should be added to the next CPS-PDU.

Notice that due to the fact that all the event clocks are integers, it is likely that more than one event may be scheduled to occur at the same time! The simulation will execute them all correctly, one at a time. To simplify matters, do not impose any particular order in which they should be executed.

Initialization

Each voice call starts its first talkspurt at a time tb randomly chosen between (0,1000) msec. This time is calculated as follows: tb=1000r, where r is a random number, 0<r<1.

What information to collect

Percentage of fill

Calculate the percentage fill of an ATM cell including the AAL 2 overheads as follows:

%fill_1 = (48 – total number of bytes of padding in the CPS-PDU)/48.

Also calculate the percentage fill excluding the AAL 2 overheads as follows:

%fill_2 = (48 – 1 byte for the CPS-PDU header – 3 bytes for each CPS-packet present in the payload of the CPS-PDU - total number of bytes of padding in the CPS-PDU) / 48.

Calculate %fill_1 and %fill_2 each time you create a CPS-PDU, add cumulatively %fill_1 to Sum1 and %fill_2 to Sum2, and increase counter N1 by 1. At the end of the simulation calculate the average value of %fill_1 by dividing Sum1 by N1, and the average value of %fill_2 by dividing Sum2 by N1.

Delay

Let D be the elapsed time from a moment an audio packet arrives to CPS to the moment that the CPS-PDU containing this CPS-packet is passed down to the ATM layer. (For a CPS-packet that straddles over two CPS-PDUs, consider only the part that fits into the second CPS-PDU). Calculate D for each audio packet, add it cumulatively to Sum3 and increase counter N2 by 1. At the end of the simulation calculate the average delay by dividing Sum3 by N3. (You could also calculate confidence intervals of the above performance measures, but for this you need to consult a book on simulation techniques.)

Results

For each set of input values of T1 and number of voice calls, run your simulation for 2100 sec. At the end, calculate the average values of %fill_1, %fill_2, and the average delay by ignoring the values for %fill_1, %fill_2, and delay that you collected in the first 100 msec. This is done because the first observations maybe affected by the initial conditions of the simulation and the initial seed used in the random number generator. If you do not get smooth curves, increase the simulation run.

Run you simulation for different values of T1 and number of voice calls, and plot the average values of %fill_1, %fill_2, and the average delay as a function of T1 and number of voices. Determine from your curves the optimum value for T1. (The default value for T1 is T1=2 msec.)

What to turn in?

The project is due at the beginning of class on the due date. You have to turn in the following materials in both hard and soft copies.

	Criteria
	Percentage

	Source code that contains an appropriate amount of comments. Well-organized and correct code receives 17 pts, messy yet working code receives 13 pts, code with bugs receives 3 pts, and incomplete code receives 1 pt.
	17 pts (85%)

	Execution output such as a snapshot of the contents of standard output. A correct output receives 3 pts, the one with minor errors receives 1 pt.
	3 pts (15%)

	Total
	20pts (100%)

Good Luck!!

[image: image1.wmf]